Pulmonary Function Tests In The Normal Pakistan Population

Pages with reference to book, From 9 To 13 F. Rafi, M. Bano (Department of Physiology, University of Karachi, Karachi-32.)

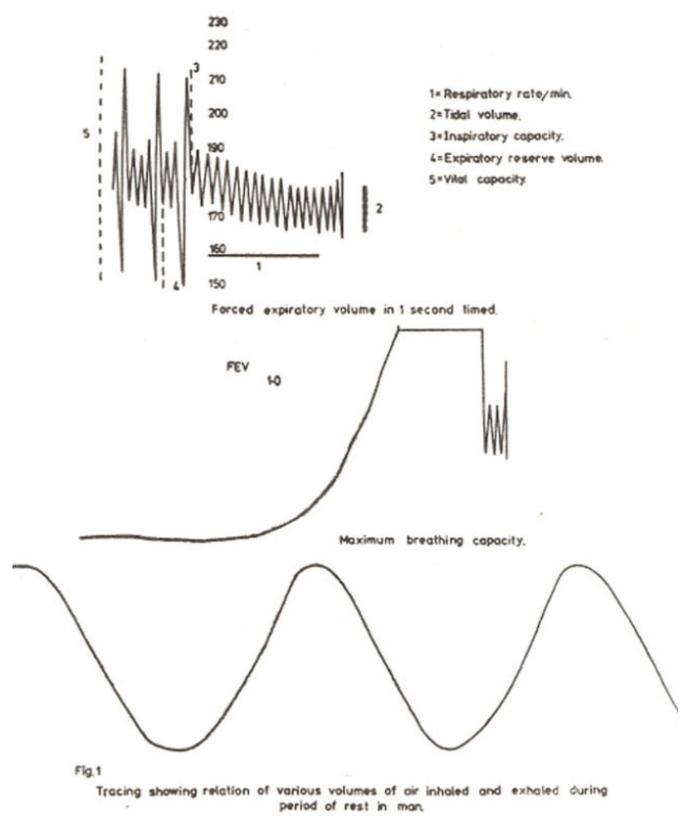
A.H. Khan (National Institute of Cardiovascular Diseases, Karachi-35.)

Abstract

Pulmonary function was assessed in apparently healthy Pakistani, subjects according to age, sex, height, weight and body surface area. The observed values were less than those predicted for healthy Americans (Baldwin, et al. 1948). (JPMA 32:-.1982).

Introduction

Normal physiological parameters are available in U.S.A. and in Eastern European countries (Bucherl 1955; Comroe et al. 1963; David et al. 1971) but no such studies are available in Pakistan. Minor abnormalities in pulmonary functions in patients with cardiorespiratory diseases cannot be detected in the absence of comparable data in healthy subjects.


In the present study, pulmonary function tests were done in healthy Pakistani individuals and compared with those reported by Baldwin et al. (1948) in healthy Americans.

Material and Methods

A hundred subjects (50 males and 50 females) of different age groups were selected according to their socio-economic status, occupation and place of origin.

The subjects were examined thoroughly to exclude cardiopulmonary disorders. The respiratory manoeuvrcs were explained to them and tests were performed at room temperature and in sitting positin.

13.5 liter C'lline respirometer (closed circuit spirometery) was filled with oxygen. The subject Pakistani Population was asked to breath normally for I to 2 minutes, and then resume quiet breathing after a maximal inspiration and expiration. From this tracing, respiratory rate, tidal volume, minute ventilation (Respiratory rate X Tidal Volume) inspiratory capacity, expiratory reserve volume and vital capacity were calculated (Fig. 1) To calcuate the percentage of forced expiratory volume in one second and maximum breathing capacity subject was asked to breathe normally for a minute then inhale maximally and then exhale rapidly arid deeply followed by resumption of quiet breathing (Fig. I) For both these pulmonary functions kymograph was set at a fast speed (1920 mm/min). The subject was asked to breathe as rapidly and as deeply as possible for 10-15 seconds and the readings were converted to one minute (Fig. I).

The gas volume recorded by the respirometer was corrected by a factor (BTPS) because the subject exhales the gas at 37C while the volume recorded on the spirograme was at room temperature. Factor for any given room temperature for correction of the measured volume to body temperature embient pressure and saturated with water vapour is called BTPS.

Results

In both sexcs different parameters like age, height, weight, body surface area and respiratory rate are compared with average values of the different parameters of lung volume (with their standard error values). All results are summarized in Table I to VI.

Table I
Relationship between Age Groups and Average Value of Respiratory Rate Tidal Volume, Minute
Ventilation and Inspiratory Capacity in Males and Females

Sex	Age groups (years)	Respiratory Rate (Breaths/min)	Tidal Volume (n:l)	Minute Ventilation (Liter/min)	Inspiratory Capacity (ml)
Males • 1620		20± .42	837 ± 56.8	16±1.17	215. ± 91.0
2125		19± .70	865 ± 43.6	16±0.65	2368 ± 91.5
2630		16±1.61	1017 ± 136.0	15±0.91	2444 ± 83.0
3135		19±1.0	903 ± 100.0	14±1.20	2421 ± 109.6
4145		15±1.24	911 ± 92.9	13±1.05	2321 ± 57.9
Femaler	1620	20± .75	803 ± 34.2	15±0.79	1655±113.1
	2125	19± .73	763 ± 51.7	14±1.08	1719± 92.0
	2630	19±1.45	672 ± 77.8	12±1.46	1744± 80.6
	3135	18±1.75	611 ± 65 2	10±0 47	1891± 52.7

Table II
Relationship between Age Groups and Average Values of Expiratory Reserve Volume, Vital
Capacity, Forced Expiratory Volume and Maximum Breathing Capacity in Males and Females.

Sex	Age group (years)	Expiratory reserve volume (ml)	Vital capacity (ml)	Forced expiratory volume (%)	Maximum &reathing capacity (Liters/min)	
Males	16—20 132	1325±95.0	3477±112.5	89±3.9	92±7.2	
	21-25	1383±49.6	3751 ± 104.5	87±2.4	90±4.0	
	26-30	1432±89.1	3853 ± 120.0	89±3.1	87±6.3	
	31-35	1354±99.0	3797± 92.3	77±3.3	86±5.7	
	41-45	1349±48.1	3670± 68.1	82±3.2	85±3.4	
Females	16-20	855±27.6	2556 ± 117.6	85±1.4	78土2.2	
	2125	989±45.0	2574士 97.6	88±2.6	81±3.2	
	26-30	909±59.3	2653 = 125.0	89±2.8	78±3.6	
	31-35	922±56.9	2813±106.3	94±3.4	81±2.3	

Table III
Relationship between Height and Average Values of Inspiratory Capacity, Expiratory Reserve Volume, Vital Capacity, Forced Expiratory Volume and Maximum Breathing Capacity in Males and Females

			1 Citiates			
Sex	Height group (cm')	Inspiratory capacity (ml)	Expiratory reserve volume (ml)	Vital capacity (ml)	Forced expiratory volume (%)	Maximum breathing capacity (lit/min)
Males	156—160	2226± 89.6	1213± 50.6	3439±100.8	80±3.4	85 <u>+</u> 2.6
	161165	2258士 69.8	1387± 98.0	3645± 86.7	83±4.2	86± 3.8
	166-170	2348士 78.6	1393士 29.0	3735± 78.9	86±1.9	87± 3.2
	171-175	2481±125.0	1437±104.9	3917±114.7	89±3.5	95± 6.6
	176-180	2528±179.1	1481 ± 68.9	4009±201.5	92±4.3	104±11.9
Females	151-155	1632± 58.5	$832 \pm\ 28.0$	2464± 61.3	87±1.8	76± 1.4
	156160	1728± 96.3	916士 40.5	2643 ± 102.9	88±3.0	81± 2.5
	161165	1742± 95.6	948± 49.4	2691±129.9	89 ± 2.3	82± 5.8
	166-170	2182±146.7	954 ± 48.0	3136±100.0	90士2.0	85± 2.0

Table IV
Relationship of Vital Capacity with Weight and Vital Capacity with
Respiratory Rate, in Males and Females

Sex	Weight (Kg)	Average vital capacity (ml)	Respira- tory rate (Breaths/ min.)	Average vital capacity (ml)
Males	41—45 46—50 51—55 56—60 61—65 66—70	3352±127.9 3694±105.3 3678±143.5 3702±93.9 3715±120.5 3934±147.2	1115 1620 2122	3798± 85.5 3726± 86.6 3633± 93.8
Females	41—45 46—50 51—55 56—60 61—65	2502± 82.0 2528±116.8 2740±155.0 2620±133.3 2967±182.3	11—15 16—20 21—22	2903±118.6 2572± 73.6 2572±106.5

Table V
Relationship of Maximum Breathing Capacity with Body Surface Area and Maximum Breathing Capacity with Respiratory Rate in Males and Females

		1 ciliates		
Sex	Body surface area (Sq. meter)	Average Breathing capacity (Lit min.)	Respira- tory rate (Breaths/ min.)	Average Maximum Breathing Capacity (Liters/min.)
Male	1.41—1.45 1.46—1.50 1.51—1.55 1.56—1.60 1.61—1.65 1.66—1.70	86± 2.4 90± 3.9 91± 6.9 83± 7.2 88± 5.0 92± 7.1	11—15 16—20 21—-22	93±3.6 91±3.8 83±3.2
	1.71—1.75 1.76—1.80 1.86—1.90	88± 4.3 100± 7.4 95±14.8		
Females	1.31—1.35 1.36—1.40 1.41—1.45 1.51—1.55 1.56—1.60 1.61—1.65	78± 2.7 78± 2.2 73± 3.1 82± 4.0 81± 3.4 84± 4.0	11—15 16—20 21—22	80.±5.2 79±1.5 79±3.2

Table VI Comparison of Pulmonary Capacities in Pakistani and American Population

Age	Height (Cms.)		Vital capacity of Pakistani (ml) population		Predicted Vital Capacity of (ml) U.S.A. Population		
(years)	Male	Female		Male	Female	Male	Female
1625	156180	151—168	,	3092-4803	2025-3328	38834535	29803330
26—35	160—177	112-168		33484158	2238-3090	3810-4360	2765-3190
36-45	158—180	-		3437—4015		3585-4085	p+14
Age (years)			Maximum Breathing Capacity of (Liter/min) Pakistani population				
-	Male	Female		Male		Male	Female
16-25	1.41-1.90	1.31-1.	78	70—139	6598	105143	87110
26—35	1.55-1.90	1.35—1.	62	73-114	68-89	106—134	8493
36-45	1.55-1.90			71110	-	99121	-

It was observed that values of pulmonary functions decreased with age and increased with height, weight, and body surface. No relationship was observed between time vital capacity (FEV1) and age.

Discussion

The higher correlation depends on size, area of lungs, expansibility of the chest, strength of muscles, excercise, hormonal effect, and life patterns. House wives and sedentary people show less value due to less physical exertion and working capacity. Predicted values for American population (Table VI) are higher than those of Pakistani population reported here which may be because Of environmental, conditious, economic, occupational and nutritional effects as well as geographical variations and psycho-social problems. Variations and errors in the present results may be due to the fact that the subject either fails to cooperate fully because of nonrespiratory factors like seif-conciousness, communication barriers, or anxiety because of suffocation due to the mouth piece used by the subject.

References

- 1. Baldwin, E. Def, Cournand, A. and Richards, D.W. j. (1948) Pulmonary insufficiency. I. Physiological classification, clinical methods of analysis, standard values in normal subjects. Medicine, 27:243.
- 2. Bates, D.V. Ct al. Respiratory function in disease; an introduction to the integrated study of the lung. 2nd ed. Philadelphia, Saunders 1971.
- 3. Bucherl, E.S. (1955) Thorax Chi urgie, 3:211. Ref. quoted in Book Methods in Pülmona y Physiology.
- 4. Comroe, J.H., Forster, R.E., Dubois, A.B., Briscoe, W.A. and Cariren, E. The lung; clinical physiology and pulmonary function tests. 2nd ed. Chicago, Year Book, 1962.