News Corner

Pages with reference to book, From 313 To 314

Permissive Parents, Sleepless Children

Researchers at Brown University School of Medicine in Providence, Rhode Island looked into the sleep pattern of 132 young children and found that parenting laxness was associated with sleep disturbance. "Their study appears in this month's Journal of Developmental and Behavioral Pediatrics. The Providence team divided the children into two groups: 80 with "significant" Sleep disturbances, who had been admitted to special clinics and 52 selected from a "general population" primary care clinic. The children were, on avenge, just over 5 years of age. The investigators discovered that "lax" parenting seemed linked to "mild" sleep disturbances (such as occasional insomnia, sleepwalking, night wakening) among some of the 52" general population" children. They define laxness" as "aparenting style characterized by inconsistency, a lack of limit setting and inadequate enforcement of rules". Some of the milder pediatric sleep problems also seemed linked to child "daytime behavioural problems" -'acting out' which may, the experts say, be encouraged by a lack of rules and discipline on the part of parents. The investigators found the children suffering from this syndrome "to be more intense and to become upset more easily than children in the other groups." Such 'highly-strung' natures may lead to 'hyperarousal' and trouble with sleeping. Children subsequently wake up tired, \'cranky' and 'act out' through the following day - creating a 'vicious circle' of daytime behaviour and nighttime insomnia. The experts admit that some of the origins for severe childhood sleep disturbance may also be linked to parenting issues not examined by their study. They speculate that issues such as marital discord or maternal depression, are more important predictors of children's sleep problems which require a referral to a subspeciality clinic.

Two new studies suggest that caloric restriction in Monkeys may Extend their Life and Health:

Two recent animal studies offer a possible explanation for how caloric restriction might possibly enhance human health and help extend life as well. One new study from the National Institute on Aging (NIA) and Dr. Roy Verdeiy at the Arizona Centre on Aging shows that a 30 percent reduction in calories in monkey's diet leads to elevation ingood cholesterol (FIDL2B) levels with a subsequent reduction in risk for cardiovascular disease. A second recent study from the NIA has shown that caloric restriction shows the age-related decrease in amounts of a naturally occurring steroid honnone, DHEA. Using natural DHEA levels as a biornarker of aging may assist scientists in their search for a way to slow down the aging process. Previous research in short-lived species such as fruit flies and rats has demonstrated that a 30 percent caloric restriction can lead to 30 percent longer life in addition to enhanced markers of good health. The first of the two studies (American Journal of Physiology, October, 1997, Vol. 36, No.4) demonstrates that, over a ten year period, a 30 percent reduction in caloric intake in rhesus monkeys leads to up to a 25 point elevation HDL2B levels as well as a 20 point decrease in triglycerides levels (as measured in milligrams per deciliter). Increases in HDL2B and decreases in triglycerides of this magnitude in humans would be a great health benefit to many, especially for those at risk for stroke or heart attack. Principle investigator, George Roth, Ph.D., Acting Chief of NIA's Laboratory of Cellular and Molecular Biology, says, "In addition to enhanced HDL2B and lower triglycerides levels, we also see a small drop in blood pressure. These HDL2B results, combined with previous findings fmm our lab showing better glucose tolerance and insulin sensitivity (which should predict lower incidence of diabetes), lower body tempemture and other such biomarkers suggesting that caloric restriction may exert beneficial effects in primates similar to those previously observed in rodents. These results may someday serve as a model for human studies".